
Evaluating iOS Applications

Manchester OWASP

Feb 2012

 © 2011 MDSec Consulting Ltd. All rights reserved.

 © 2011 MDSec Consulting Ltd. All rights reserved.

• I’m a co-founder & director of MDSec
• Apple fanboy?

- CVE-2011-0204: Apple ImageIO TIFF Heap Overflow
- CVE-2011-0194: Apple ImageIO TIFF Image Integer Overflow
- CVE-2010-1845: Apple ImageIO PSD Memory Corruption

• Perspective is that of a Pen tester, not a developer

• MDSec:

- Web App Hacker’s Handbook 1st & 2nd Edition
- Worldwide training
- Online training
- Burp Suite

Introduction

Company and Speaker Overview

1999

2004

2007

2011

2013

 © 2011 MDSec Consulting Ltd. All rights reserved.

Evaluating iOS Applications

Overview

• Introduction

• Overview of iOS & Apps

• Blackbox Assessment

• Transport Security

• Data Storage

• Keychain

• Protocol Handlers

• UIWebViews

• Injection Attacks

• Filesystem Interaction

• Geolocation

• Logging

• Memory Corruption

 © 2011 MDSec Consulting Ltd. All rights reserved.

Overview

Why Mobile Security?

Why iOS Apps?

- Apple have a 52% market share [1]

- Over half a million apps in App Store

Mobile Security

- In focus over last few years

- Steady increase in requests for mobile app assessments

- Public app problems:

- Citigroup data storage

- Skype XSS & Protocol Handler vulnerabilities

- Often hold personal data

- Online banking, social networking etc…

http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1

http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1

 © 2011 MDSec Consulting Ltd. All rights reserved.

Overview

Why Mobile Security?

http://www.theregister.co.uk/2010/07/27/citi_iphone_app_weakness/

“In a letter, the US banking giant said
the Citi Mobile app saved user
information in a hidden file that
could be used by attackers to gain
unauthorized access to online
accounts. Personal information
stored in the file could include
account numbers, bill payments and
security access codes…”.

http://www.theregister.co.uk/2010/07/27/citi_iphone_app_weakness/
http://www.theregister.co.uk/2010/07/27/citi_iphone_app_weakness/

 © 2011 MDSec Consulting Ltd. All rights reserved.

Overview

Platform Security Features

• Code Signing

- Prevents unauthorised apps running

- Validates app signatures at runtime

• Sandboxing

- Apps run in a self-contained environment

- Third party apps assigned “container” seatbelt profile

- Allows some access to address book, media & outbound network

• ASLR

- Randomises where data & code is mapped in an address space

- Apps can have partial or full ASLR (compiled with PIE)

• Encryption

- Hardware based encryption; “data is encrypted at rest”

- Provides Data Protection API for protecting individual items

 © 2011 MDSec Consulting Ltd. All rights reserved.

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSLog (@"Hello, World!");

 [pool drain];

Overview

iOS Apps

• Developed in Objective C

– Superset of C

• Xcode for development

– I can haz Apple?

[Object method:argument]

 © 2011 MDSec Consulting Ltd. All rights reserved.

Overview

iOS Apps

• Previous work:

– “Auditing iPhone and iPad Applications” by Ilja van Sprundel

– “Secure Development on iOS” by David Thiel

– “Apple iOS 4 Security Evaluation” by Dino Dai Zovi

 © 2011 MDSec Consulting Ltd. All rights reserved.

Blackbox Assessment

Intercepting Communications

• Configure the device for a proxy

• Install a self-signed certificate on the device to capture HTTPS

http://carnal0wnage.attackresearch.com/2010/11/iphone-burp.html

http://carnal0wnage.attackresearch.com/2010/11/iphone-burp.html
http://carnal0wnage.attackresearch.com/2010/11/iphone-burp.html
http://carnal0wnage.attackresearch.com/2010/11/iphone-burp.html

 © 2011 MDSec Consulting Ltd. All rights reserved.

Blackbox Assessment

Position Independent Executable

• Use a jailbroken phone to SSH to the device and extract the app

• Otool is your friend

– With PIE:

– Without PIE:

 © 2011 MDSec Consulting Ltd. All rights reserved.

Blackbox Assessment

Reverse Engineering

• Apps are stored as an IPA in iTunes Library

– IPA is just ZIP

• App Store binaries are encrypted

– Manual decryption

• Use debugger, breakpoint EP, let loader decrypt, dump decrypted image

• http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-
binaries

– Automated

• Crackulous & AppCrack

http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries
http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-iphone-appstore-binaries

 © 2011 MDSec Consulting Ltd. All rights reserved.

Transport Security

Introduction

• Mobile devices may often use untrusted networks

– Imperative that data is sent securely

• Apple provides a couple of ways to do HTTPS

– NSURLConnection

– CFNetwork

• Developers sometimes pass on to third party code

– CyaSSL

– Matrix SSL

– OpenSSL

 © 2011 MDSec Consulting Ltd. All rights reserved.

Transport Security

SSL Ciphers

• Different TLS handshake depending on SDK

• Version 4.3 of SDK uses TLS 1.0 with 29 suites, some weak:

– TLS_RSA_WITH_DES_CBC_SHA

– TLS_RSA_EXPORT_WITH_RC4_MD5

– TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

– TLS_DHE_RSA_WITH_DES_CBC_SHA

– TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

• Version 5.0 uses TLS 1.2 with 37 suites, none weak

• API provides no way to configure cipher suites AFAIK

 © 2011 MDSec Consulting Ltd. All rights reserved.

Transport Security

NSURLConnection

• Developers often allow self-signed certs

• NSURLRequest:

– Default behaviour is to reject cert and throw NSURLErrorDomain

– Developers override with allowsAnyHTTPSCertificateForHost

• Private delegate method

• NSURLConnection:

– Alternate approach using didReceiveAuthenticationChallenge delegate

• Ignore cert using continueWithoutCredentialForAuthenticationChallenge selector

 © 2011 MDSec Consulting Ltd. All rights reserved.

Transport Security

CFNetwork

• Alternate implementation

– More granular than NSURLConnection

• Developers have more control over certs

– Allow expired certs:

• kCFStreamSSLAllowsExpiredCertificates

– Allow expired roots:

• kCFStreamSSLAllowsExpiredRoots

– Allow any root:

• kCFStreamSSLAllowsAnyRoot

– No validation at all????

• kCFStreamSSLValidatesCertificateChain

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Introduction

• Mobile apps can often hold sensitive data

– High risk of device being lost or stolen

– Imperative data is protected in these scenarios

• Client-side data takes a number of forms

– Custom created documents

– Logs

– Cookie stores

– Plists

– Data caches

– Databases

• Stored in /var/mobile/Applications/<GUID>

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Data Protection API

• Apple API for using the hardware crypto

• Encrypted using a key derived from passcode

• Developers must “mark” files to protect

• 4 levels of protection

– No protection:

• NSDataWritingFileProtectionNone / NSFileProtectionNone

– Complete protection:

• NSDataWritingFileProtectionComplete / NSFileProtectionComplete

– Complete unless open:

• NSDataWritingFileProtectionCompleteUnlessOpen /
NSFileProtectionCompleteUnlessOpen

– Complete until first authentication:

• NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication /
NSFileProtectionCompleteUntilFirstUserAuthentication

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Real World Example

• Kik Messenger

– Send IM through data

– Over 1 million users

– Users sign up for a Kik account

– http://kik.com/

http://kik.com/

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Kik Messenger

• Library/Preferences/com.kik.chat.plist:

– Username

– Password

– Email

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Kik Messenger

• Documents/kik.sqlite:

– Chat history

 © 2011 MDSec Consulting Ltd. All rights reserved.

Data Storage

Kik Messenger

• Documents/fileAttachments:

mbp:Documents $ file fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4
fileAttachments/057a8fc9-0daf-4750-b356-5b28755f4ec4: JPEG image data, JFIF
standard 1.01 mbp:Documents $

 © 2011 MDSec Consulting Ltd. All rights reserved.

Keychain

Overview

• Encrypted container for storing sensitive information

• Apps can only access their keychain items unless part of a keychain access
group:

– Set by entitlements from provisioning profile

– Jailbroken – apps to dump keychain

• 6 levels of protection:

– kSecAttrAccessibleAlways

– kSecAttrAccessibleWhenUnlocked

– kSecAttrAccessibleAfterFirstUnlock

– kSecAttrAccessibleAlwaysThisDeviceOnly

– kSecAttrAccessibleWhenUnlockedThisDeviceOnly

– kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly

 © 2011 MDSec Consulting Ltd. All rights reserved.

Protocol Handlers

Overview

• No real Inter-Process Communication

• Apps prohibited from sharing because of sandbox

• Apps sometimes need to share data

• Apps can register a custom protocol handler

 © 2011 MDSec Consulting Ltd. All rights reserved.

Protocol Handlers

Implementation

• Two methods for implementing protocol handlers

• handleOpenURL

– Now deprecated

• openURL

– Provides bundle identifier

– Allows developer to validate source app

• Example found during an app assessment

– app://setConfiguration?landingpage= - Set the landing page for an app

 © 2011 MDSec Consulting Ltd. All rights reserved.

Protocol Handlers

Skype Vulnerability

• Skype registers the “skype://” protocol handler

• Malicious web site could make calls

• Skype app did not prompt or validate before call

<iframe src=”skype://123456789?call"></iframe>

https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf

https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf

 © 2011 MDSec Consulting Ltd. All rights reserved.

UIWebViews

Overview

• iOS rendering engine for displaying text, supports a number of formats:

– HTML

– PDF

– RTF

– Office Documents (XLS, PPT, DOC)

– iWork Documents (Pages, Numbers, Keynote)

• Built upon WebKit and uses the same core frameworks as Safari

• Supports java-script, cannot be disabled

– Unescaped input leads to Cross-Site Scripting

 © 2011 MDSec Consulting Ltd. All rights reserved.

UIWebView

Cross-Site Scripting

• Similar attacks to standard XSS

– Session theft etc

• Can occur whenever user controlled Objective C variables populated in to
WebView

– stringByEvaluatingJavaScriptFromString

 NSString *javascript = [[NSString alloc] initWithFormat:@"var myvar=\"%@\";",
username];

[mywebView stringByEvaluatingJavaScriptFromString:javascript];

 © 2011 MDSec Consulting Ltd. All rights reserved.

UIWebView

Cross-Site Scripting

• No native JS to Objective C bridge

– Developers will often implement one

– Examples:

• Using camera from JS

• Sending e-mails from JS

• Sending SMS from JS

• Bridge implemented using WebView specific URL handler:

– shouldStartLoadWithRequest

• Bridge can often expose Objective C methods

– Serialize/Unserialize methods & parameters

– performSelector:NSSelectorFromString(method)

 © 2011 MDSec Consulting Ltd. All rights reserved.

UIWebView

Cross-Site Scripting

• Real world example:

– Skype (AGAIN!)

– Displays “full name” from incoming call in a WebView

– Used a local HTML template so loaded in local context

– XSS in full name lead to addressbook theft

https://superevr.com/blog/2011/xss-in-skype-for-ios/

https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/
https://superevr.com/blog/2011/xss-in-skype-for-ios/

 © 2011 MDSec Consulting Ltd. All rights reserved.

XML Processing

Overview

• Widely used in mobile apps

• iOS offers 2 options for parsing XML with the SDK:

– NSXMLParser

– libXML2

• Lots of other third party implementations exist

 © 2011 MDSec Consulting Ltd. All rights reserved.

XML Processing

NSXMLParser

• Not vulnerable to “billion laughs” attack by default

– Parser raises a NSXMLParserEntityRefLoopError exception

• Not vulnerable to eXternal Xml Entity injection by default

• Developer must enable the setShouldResolveExternalEntities option

– Not unthinkable, seen in practice on several occasions

NSXMLParser *addressParser = [[NSXMLParser alloc] initWithData:xmlData];
[addressParser setShouldResolveExternalEntities:YES];

 © 2011 MDSec Consulting Ltd. All rights reserved.

XML Processing

libXML2

• Not vulnerable to “billion laughs” attack by default

– Parser throws error: “Detected an entity reference loop”

• Vulnerable to eXternal XML Entity injection by default!

-(BOOL) parser:(NSString *)xml {

xmlDocPtr doc = xmlParseMemory([xml UTF8String], [xml
lengthOfBytesUsingEncoding:NSUTF8StringEncoding]);

xmlNodePtr root = xmlDocGetRootElement(doc);
}

 © 2011 MDSec Consulting Ltd. All rights reserved.

SQL

Overview

• Apps may need to store data client-side

– API supports SQLite

• Unsanitised user input in dynamic queries leads to SQL injection

• Used parameterised queries!

NSString *sql = [NSString stringWithFormat:@"SELECT name FROM products
WHERE id = '%@'", id];
const char *query = [sql UTF8String];

const char *sql = "SELECT name FROM products WHERE id = ?";
sqlite3_prepare_v2(database, sql, -1, &sql_statement, NULL);
sqlite3_bind_text(&sql_statement, 1, id, -1, SQLITE_TRANSIENT);

 © 2011 MDSec Consulting Ltd. All rights reserved.

SQL

Demo

DEMO

 NSString *sql = [NSString stringWithFormat:@"INSERT INTO tweets VALUES('1',
'%@','%@','%@')", tweet, user, displayname];
 const char *insert_stmt = [sql UTF8String];
 sqlite3_prepare_v2(database, insert_stmt, -1, &statement, NULL);
 if (sqlite3_step(statement) == SQLITE_DONE)

 © 2011 MDSec Consulting Ltd. All rights reserved.

Filesystem Interaction

Overview

• Objective C provides NSFileManager class for filesystem access:

– Check if file exists

– Compare file contents

– Check file permissions

– Move/Copy files

– Read & write from/to files

• Can be affected by traditional file IO issues

 © 2011 MDSec Consulting Ltd. All rights reserved.

Filesystem Interaction

Directory Traversal

• Vulnerable to vanilla traversals:

– ../../../../../../../

- (NSData*) readContents:(NSString*)location {
 NSFileManager *filemgr;
 NSData *buffer;
 filemgr = [NSFileManager defaultManager];
 buffer = [filemgr contentsAtPath:location];
 return buffer;
}

NSString *sourcePath = [[[NSBundle mainBundle] resourcePath]
stringByAppendingPathComponent:@file];
NSString *contents = [[NSString alloc] initWithData:[fm readContents:sourcePath]
encoding:NSUTF8StringEncoding];

 © 2011 MDSec Consulting Ltd. All rights reserved.

Logging

Overview

• API provides the NSLog() method

– Will print to console

– Visible in Xcode Organiser

• Some jailbreaks redirect console > syslog

• Some apps will use their own wrapper and log to app folder

• Don’t store sensitive information there!

– If used, ensure removed in release builds

NSLog(@"Account Number: %@, Sort code: %@", account, sortcode);

 © 2011 MDSec Consulting Ltd. All rights reserved.

Geolocation

Overview

• Provided by the Core Location framework

• Avoid being “too accurate”

• Don’t log location information on either client or server

– If you MUST – make anonymous!

 © 2011 MDSec Consulting Ltd. All rights reserved.

Geolocation

Accuracy

• Can be set by one of the following constants:

– kCLLocationAccuracyBestForNavigation;
kCLLocationAccuracyBest;
kCLLocationAccuracyNearestTenMeters;
kCLLocationAccuracyHundredMeters;
kCLLocationAccuracyKilometer;
kCLLocationAccuracyThreeKilometers;

self.locationManager.desiredAccuracy = kCLLocationAccuracyBest;

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Overview

• As previously mentioned – superset of C

– Developers often using straight C

– Compiled to native code

– Gives rise to the traditional issues

• Overflows

• Integer wraps

• Shouldn’t need to allocate memory unless specific performance overhead

– Stick to objective C allocators

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Format Strings

• A number of API methods support format specifiers

• If used incorrectly, leads to classic format string bugs

• Vulnerable methods include:

– NSLog()

– [NSString stringWithFormat]

– [NSString stringByAppendingFormat]

– [NSString initWithFormat]

– [NSMutableString appendFormat]

– [NSAlert alertWithMessageText]

– [NSException]

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Format Strings - Exploitation

• Traditionally use %n to write to an arbitrary address address

– Not available on iOS

• Apple provide %@ specifier for objects

– Call an arbitrary function pointer!

– Unfortunately rare to find data stored on stack 

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Format Strings - Exploitation

• Example:

NSString *myURL=@"http://localhost/test";
NSURLRequest *theRequest = [NSURLRequest requestWithURL:[NSURL
URLWithString:myURL]];
NSURLResponse *resp = nil;
NSError *err = nil;
NSData *response = [NSURLConnection sendSynchronousRequest: theRequest
returningResponse: &resp error: &err];
NSString * theString = [[NSString alloc] initWithData:response
encoding:NSASCIIStringEncoding];
NSLog(theString);

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Format Strings - Exploitation

• Example:

• Output:

• Dumps stack memory

HTTP/1.1 200 OK
Content-Length: 29

AAAA%08x.%08x.%08x.%08x.%08x.

2012-01-31 17:46:41.780 fmtstr[2476:1207]
AAAA93f9ea22.0030fc90.00000001.bffffbf8.00000000.

 © 2011 MDSec Consulting Ltd. All rights reserved.

Memory Corruption

Object Use after Free

• Same concept as use-after-free bugs

• References to an object still exist after it has been freed

• Exploitable but unlikely in practice

 © 2011 MDSec Consulting Ltd. All rights reserved.

Conclusions

• Transport security & data storage are probably two of the biggest issues for iOS
apps

• Apps can be vulnerable to lots of API specific attacks

• Platform provides additional security features to mitigate against some attacks

 © 2011 MDSec Consulting Ltd. All rights reserved.

Further Reading

• OWASP Mobile Security Project

– https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

• MDSec Research / Blog

– http://blog.mdsec.co.uk

– http://www.mdsec.co.uk/research

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://blog.mdsec.co.uk/
http://www.mdsec.co.uk/research

 © 2011 MDSec Consulting Ltd. All rights reserved.

Q & A

That’s all folks!

QUESTIONS?

• Online:

– http://www.mdsec.co.uk

– http://blog.mdsec.co.uk

• E-Mail:

– dominic [at] mdsec [dot] co [dot] uk

• Twitter:

– @deadbeefuk

– @MDSecLabs

http://www.mdsec.co.uk/
http://blog.mdsec.co.uk/

