SMDSec

Breaking “Secure” Mobile Applications
BSidesMCR
June 2014

Introduction QMDS
eC

Setting The Standard.

Agenda

* Background

* The problem

e (Case studies

* Binary protections

* Final case study

* Conclusions
© 2014 MDSec Consulting Ltd. All rights reserved.

Introduction

mMDSec

Setting The Standard.

Background

« Spent ~18 months from 2011 on one project, helping to make
their app “secure”

« Application protections weren’t mainstream or documented at
the time

« Continuous arms race; stuck in a break, advice, develop cycle

* Learned a lot and contributed to what | believe to be a quite an
impressive project

© 2014 MDSec Consulting Ltd. All rights reserved.

The Problem Q
Mobile Data MDseC

Setting The Standard.

* Lots of applications, doing lots of interesting things
— Banking
— Social networks
— Gambling
— Privacy driven applications
— Enterprise applications with internal integrations

* Lots of interesting data
— PII

— Financial data
— Sensitive corporate data

© 2014 MDSec Consulting Ltd. All rights reserved.

The Problem

The Attack Surface MDSGC

Setting The Standard.

* Mobile application insecurities are well documented
— Insecure storage
— Transport insecurities
— Injection vulnerabilities
— Tampering attacks

 What are the attack scenarios?
— Jailbreaking/Rooting by user/attacker — Pangu?
— Attacks from malware, e.g. Unflod Baby Panda
— App imitation and repacking with malicious code

— Targeted exploitation
— Casual drive by download

© 2014 MDSec Consulting Ltd. All rights reserved.

The P.robI.em 1 kMDSeC

Setting The Standard.

Application Insecurities

 Direct remediation of application insecurities is generally well documented

« Many applications have started to follow recommended actions to address the
traditional vulnerabilities:

— Client side authentication
— Encryption of persistent data
— Certificate pinning

Do these protect against all attack scenarios?
— How trivial is it to bypass from on-device?
— What about resource/app modification — adware/spyware insertion?

The arms race begins...

© 2014 MDSec Consulting Ltd. All rights reserved.

Introduction QMDS
. eC

Setting The Standard.

Case Studies

« “Secure” is banded around a lot, not just in mobile
— “Secure end-to-end messaging”
— “Secure storage”
— “Secure device management”

CHALLENGE ACGEPTED

« Decided to challenge some of these claims

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #1 QMDS
eC

Mobilelron

Setting The Standard.

 Popular MDM driven by policies set on the VSP (Virtual
Smartphone Platform)

* Reports back to the VSP/Sentry devices of policy violations such
as jailbreaking and can react accordingly, examples include
removing e-mail and VPN access

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #1

Mobilelron QMDSGC

Setting The Standard.

 Well known limitation of the software, forcibly closing the app
and disabling location services prevents it detecting policy
violations and reporting back to the VSP

Just the MobilelIron process

The Mobile@Work app checks in with the VSP to provide and obtain updated information, policies,

and configurations. Because Apple does not permit apps to run all the time, the Mobile@Work app
checks in with the VSP only when:

e The device user launches the app.

At this time, any queued changes to Mobilelron policies are applied and the Last Connected
Time parameter is updated. The jailbreak status is also updated.

e The device detects a signiﬁcant location change.

When 2 significant location change is detected, the app wakes up, runs jailbreak detection, and
then does one of the following:

e Performs a Mobile@Work check-in immediately if it has been jailbroken.
e Performs a Mobile@Work check-in when the sync interval has elapsed.

The sync interval is defined in the sync policy on the VSP and known to the Mobile@Work app.
The app initiates the check-in.

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #2 tMDS
eC

Wickr

Setting The Standard.

* InlJanuary 2014 Wickr announced a bug bounty

Wickr will as much as US $100,000 for a vulnerability that substantially affects the confidentiali
integrity of user data. We will also consider paying the same amount for defense techniques and nove

o eliminating the vulnerability that are submitted at the same time. Our goal is to make this
the most generous and successful bounty program in the world.

Beyond making lots of money, you can feel good about helping Wickr because we were founded to
protect the basic human right of private correspondence. Private correspondence is extremely important
to a free society. People all over the world depend on Wickr. Please help us with this mission.

To submit a bug, please contact us via email at bugbounty@mywickr.com. The program specifics are on
the following pages.

Engaging Hackers

Bevond the Bug Bounty Program. Wickr engages with the best security firms in the world for code review
and penetration testing. Veracode gave Wickr a ect score on its first review. Furthermore, Wickr had
m%ma%mra—’mgrmmﬁms from Stroz Friedberg,
one of the largest forensics companies in the world. The researchers analyzed Wickr, Snapchat and
Facebook Poke to determine that while Snapchat and Facebook revealed personal information, Wickr

indeed left no trace. We expect finding critical vulnerabilities in Wickr to be difficult and are honored to
work with those that do.

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #2

Wickr AMDSGC

Setting The Standard.

The application is a privacy driven instant messaging service

* Tag line “leave no trace” — supposedly forensically sound

e Self-destructing messages, pictures, fully encrypted

* The app employed no binary protections so tampering was fairly
trivial

 Within 24 hours there were some interesting findings

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #2 QMDS
eC

Wickr

Setting The Standard.

WICKR DEMO

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3

GO!Enterprise MDSGC

Setting The Standard.

e BYOD container that allows a separate workspace for mail,
contacts, secure browsing, file storage etc.

* “The GO!Enterprise mobility platform was designed from the
ground up with security in mind. Thus GO!Enterprise solutions
inherit a wealth of security features that minimize the risk of
unauthorized access, data leakage and security breaches.”

 All managed from a per enterprise cloud instance

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3 QMD
GO!Enterprise Sec

Setting The Standard.

* |nstalled the app and synchronised data; appeared to be using
these databases for storage

root@mako:/data/data’/gr.globo.citrongo.enterprise.client/databases # ls -la
—P——————— ud_ad6 ud_ad6 178176 2014-06-17 11:17 DECgo

- —————— ud_as6 ud_as6 128432 2014-06-17 11:16 GOCustomDBPrivate
=P ————— ud_as6 ud_as6 602112 2014-06-17 11:17 storage.db

e Decompiling and analysing the APK, revealed it was using
SQLCipher

this.mIsInitializing = true;
String str = this.mContext.getDatabasePath(this.mName).getPath();

localSQLiteDatabase = SOLiteDatabase. openDatabase(str, this.mPassword, this.mFactory, 1);
if (localSQLiteDatabase.getVersion() != this.mNewVersion)

throw new SQLiteException("Can't upgrade read-only database from version " + localSQLiteDatabase.getVersion() + " to " + this.mNewVersion + ": " + str);

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3 cMD
- Sec

GO!Enterprise

Setting The Standard.

 Next step was to find where mPassword comes from:

public String generateKey()
{
Object[] arrayOfObject = new Object[2];
array0fObject[0] = getDeviceIMEI();
array0fObject[1] = this.mContext.getDatabasePath(this.mName);
String strl = String. format("%s:%s", arrayOfObject);
byte[] arrayOfByte = getDeviceIMEI().getBytes();
try
{
PBEKeySpec localPBEKeySpec = new PBEKeySpec(strl.toCharArray(), arrayOfByte, 300, 192);

str2 = new String(encodetex(new SecretKeySpec(SecretKeyFactory.getInstance("PBENLthSHA256And256B1tAES-CBC-BC"). generateSecret(localPBEKeySpec). getEncoded(), "AES").getEncoded()));
return str2;

}

catch (Exception localException)

{
while (true)
String str2 = "PBENi1thSHA256And256B1tAES-CBC-BC",;

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3 QMD
Sec

GO!Enterprise

Setting The Standard.

* The key appears to be derived from the IMEI and the path to the
database, using the IMEI as a salt

* This can be verified by reproducing the code in another app

public String generateKey()

{
TelephonyManager mngr = (TelephonyManager)getSystemService(Context. TELEPHONY_SERVICE);
String imei = mngr.getDeviceld();
Log.d("MDSecApp", "###### got imel = " + imei);
Object[] array0fObject = new Object[2];
array0fObject[0] = imei;
array0fObject[1] = "/data/data/gr.globo.citrongo.enterprise.client/databases/storage.db";
String strl = String. format("%s:%s", array0fObject);
byte[] arrayOfByte = imei.getBytes();
try
{
PBEKeySpec localPBEKeySpec = new PBEKeySpec(strl.toCharArray(), arrayOfByte, 300, 192);
SecretKeySpec skeyspec = new SecretKeySpec(SecretKeyFactory.getInstance("PBEWithSHA256And256B1tAES-CBC-BC").generateSecret(localPBEKeySt
String str2 = new String(this.encodeHex(skeyspec.getEncoded()));
return str2;
}
catch (Exception localException)
{
Log.d("MDSecApp", "###### error");
}
return "";
}

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3

MDSec

GO!Enterprise @ Sctiing The sfanc

* Running the PoC generates the following key for the “storage.db”

database

D/MDSechp)i RRRRAR got imel = 3 >
D/MDSecTest 90 RARRR ﬂvnvtﬂ?v key = 9a8d/040eeffShcb5hbET004644F4957bed3e616a3251cdb2a7cefa9caa9ddbt

* Using the key it’s possible to view the database

arc dmch sqlcipher ./ =tor age.db

“L'lphvr version 3.7.17 20 D5-20 00:56:22

Enter ".help" for instructions
Enter SQL statements terminated with a ";"
pragma key = "9a8d040eeffSbcbSbbETO0464414957bed3e616a3251cdb2a7ceSa9caa9ddbt *;

sqlite=

sqlite= .tables

_applicationpages _vm_databases

_irisinfo _wm_databases_acl
_localization _vm_db_startup_operations
_wvariables android_metadata

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #3
GO!Enterprise

e The variables table has some interesting data...

global |ENY | userId| 756
global ICONFIGI_DEVICEIMEI| 2551360569 71900

global ICONFIGI|_PASSWORDI| templZ23

global |CONFIGI_DEVICESCREENWIDTH I 762

global ICONFIGI_DEVICEUNIQUEIDI|IGOEnterprise-Globo355136056971909

global ICONFIGIGETSERVER I

global |CONFIGI_DEVICESCREEMNHEIGHT 11184

global ICONFIGI_IRISURL Ihttps://${CONFIG: REGSERVER} /1iris/rni.aspx

global ICONFIGI_CLIENTVYERSIONI|IGOEnterprise-Globo-Android-2.2.2-en_US. apk

global ICONFIGIURELSCHEME lhttps

global ICONFIGI_IRISVERSIONI|ISCYC1a3 Cr:CDCEE_ﬁﬁ4F3@54F3424C3922826@Dl

global ICONFIGI_DEVICETYPEIMozillas5.2 (Linux; Android 4.4.2; Nexus 4 Build/KOT4SH)
global ICONFIGI_USERENAME | test. dm n_—tr:: t

global |CONFIGIUSESTHECLOUDI1

global ICONFIGISERVER ldmc-test. 247 .mob1

global ICONFIGIREGSERVER ldmc-test. 247 .mobi/nr

global ISECURITY | _USEHTTPSENCEYPTIONI1

global ISECURITY | _AUTOLOCK @

global ISECURITY | _COPYPASTELOCKI|®

global ISECURITY | _INACTIVITY_TIMEOUTI1®

global ISECURITY | _SERVERTOKEN [635385142712260000

global ISECURITY | _SECURITYPOLICYHASHVALUE | CCA9DAESALIEOG /B9 25F 322443624 3F1467A6583
global ISECURITY | _PINCODEI1111

global ISECURITY | _USEOTAENCEYPTIONI1
global ISECURITY | _REQUIRE_PIN_ON_STARTI1

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #4 QMDS
eC

Ka Seya BYO D Setting The Standard.

Bring Your Own Device (BYOD) Management

With the Kaseya BYOD Suite, organizations can give employees the freedom to work
on their personal devices, while ensuring the security of enterprise data and
applications on those devices. The solution provides employees with access to
corporate applications, email, and documents from their personal devices , while
providing IT with peace of mind through unprecedented BYOD security and ease of

deployment and administration.

Kaseya BYOD Suite running on different device types

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #4 QMDS
eC

Kaseya BYOD

Setting The Standard.

BYOD application that provides access to documents, e-mail, and
a browser

 Apps connect to a gateway that proxies to internal resources such
as intranet applications and file shares

* Access to the app is protected via a PIN

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #4
Kaseya BYOD

* Quickly identified an interesting class:

@interface RVSuiteStorage : XXUnknownSuperclass {
}

+(id) keychainStore;

+(id)key: (id)key forGwid: (id)gwid;
+(B0OOL)validatePasscode: (id) passcode;
+(void)startPasswordTimerForGwid: (id)gwid;
+(void)startPasscodeTimer;

+(id)siteList;

+(void)setSiteList: (id) list;
+(void)setPasscodeInterval: (double)interval;
+(void)setPasscode: (id)passcode;
+(void)setMailInfo: (id) info;

+(void) resetPasswordTimerForGwid: (id)gwid;
+(void) resetPasscodeTimer;

+(void) removeAllltems;

MDSec

Setting

+(BOOL)perPolicyExpires: (double)expires isPasswordExpiredForGwid: (id)gwid;

+(id)mailInfo;

+(BOOL) isPasscodeSet;
+(BOOL) isPasscodeNeeded;
+(void)clearPasscode;
@end

© 2014 MDSec Consulting Ltd. All rights reserved.

The Standard.

Case Study #4 QMDS
eC

Kaseya BYOD

Setting The Standard.

Kaseya BYOD DEMO

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QM
DSec

Ove rVI EW Setting The Standard.

Introduced to the OWASP Mobile Top Ten at OWASP AppSec
California in January 2014

 Attempts to achieve the following goals:
— Prevent software operating in an untrusted environment
— Thwart or increase the complexity of reverse engineering
— Thwart or increase the complexity of modification or tampering attacks

— Detect/Prevent attacks from on-device malware

e How common are these protections?
— 2013 study by HP : “86 percent of applications tested lacked binary
hardening”

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QM
DSec

Overview

Setting The Standard.

e So what are the risks?
— Theft of Intellectual Property from reverse engineering

— Circumvention of security controls; authentication, encryption, licensing,
DRM, jailbreak/root detection

— Loss of revenue from piracy

— Brand/Reputational damage from app imitation and/or code modification

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Overview

Setting The Standard.

 Some of the binary protections you may have encountered:
— Jailbreak/Root detection
— Resource and code integrity checksums
— Anti-debugging
— Runtime tamper protection
— Obfuscation

e Not a silver bullet!

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QM
DSec

Jailbreak/Root Detection

Setting The Standard.

 Attempts to detect if the application is running on a jailbroken or
rooted device

* |fa compromise is detected the app usually does one or more of:
— Warn the user

— Wipe any sensitive data
— Report back to a management server
— Exit / Crash

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Jailbreak/Root Detection

Setting The Standard.

* Jailbreak/Root detection implementations usually perform the
following activities:
— Examine the filesystem
— Check open ports
— Test sandbox restrictions

— Permissions on memory pages
— Evidence of modifications (e.g. build keys)

e Often trivial to bypass unless other protections are in place

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections

Q~MDSec

Setting The Standard.

Integrity Checksums

Attempt to ensure that application resources or internal code
structures haven’t been modified or new code inserted

* |f tampering is detected more often than not a crash is triggered

* Typically implemented by embedding a “web” of self validating
checksum functions in to an application

* Checksum calculations performed on specific functions or across
a class, as well as portions of the code segment

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Integrity Checksums

Setting The Standard.

* For native code can be implemented using C

— Insert a label before and after the functions you want to checksum to get
the function size

#define CRC_START_BLOCK(label) void label(void) {
nsigned long dummyfunctionCRC = @x00000000;

CRC_START_BLOCK(dummyfunction_label)

void dummyfunction()

0 {

1 printf("%s\n", "This function does nothing");
2}
3 CRC_END_BLOCK(dummyfunction_label)

)

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections cMD
Sec

Integrity Checksums

Setting The Standard.

e A checksum can then be calculated based on the start address +
the length and compared with a stored checksum

e Similar checks should be embedded across the code

int basicTamperValidation(unsigned char %start, unsigned char =len, unsigned long tmpCRC) {

start_address = start;
block_length len;
crc32_stored tmpCRC;

||

end_address = start_address + block_length;
unsigned long crc = crc32_calc(start_address, block_length);

if (crc !'= crc32_stored) {
take_evasive_action("Possible Tamper: CRC32 0Ox%@8x does not match @x%88x\n", crc, crc32_stored);
}

return 0;

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QM
DSec

Integrity CheCksumS Setting The Standard.

 There are several shortcomings in this method of
implementation:
— The application first needs to be run to calculate the stored CRC which is
then embedded in to the code
— The location of the checksums is difficult to randomize across builds

* A better but complex approach can be achieved using the LLVM

compiler
— During compilation the JIT engine can compile the functions that you want

to protect
— This can be used to calculate the relevant checksums then validation code
can be embedded using the LLVM IR

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections

QMDSec

Setting The Standard.

Anti-Debugging

 With a debugger an attacker is able to trivially manipulate
application behavior

 For example, in iOS applications it is possible to simulate method
calls to objects by invoking calls to objc _msgSend

* Anti-debugging protections attempt to detect and prevent a
debugger being attached

* Unlikely to thwart an advanced adversary

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Anti-Debugging

Setting The Standard.

* OniOS the process status can be queried using sysctl

int isdebuggerpresent()
{
struct kinfo_proc infos_process;
size_t size_info_proc = sizeof(infos_process);
pid_t pid_process = getpid(); // pid of the current process
int mib[] = {CTL_KERN, // Kernel infos
KERN_PROC, // Search in process table
KERN_PROC_PID, // the process with pid =
pid_process}; // pid_process
int ret = sysctl(mib, 4, &infos_process, &size_info_proc, NULL, 0);
if (ret) {
fprintf(stderr,"no debugger present!\n");
return 0;
}// sysctl failed
struct extern_proc process = infos_process.kp_proc;
int flags_process = process.p_flag;

fprintf(stderr,"debugger present!\n");
return flags_process & P_TRACED; // value of the debug flag

* The PT DENY ATTACH flag can also be set

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections AM
DSec

Anti-Debugging

Setting The Standard.

e Several common implementations for Android applications
* DVM has the Debug.isDebuggerConnected class

 (Can also be read directly from the DVM via NI rather than using

the API boolean detect_threadCpuTimeNanos() {
long start = Debug.threadCpuTimeNanos();
(int i=0; i <1000000; ++i)
* Timing thread execution ;
long stop = Debug.threadCpuTimeNanos();

(stop - start < 10000000)
false;

true;

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections &M
DSec

Runtime Tamper Protection

Setting The Standard.

 Frameworks like Cydia Substrate make hooking of the Objective-C
or Dalvik runtimes trivial

 Allows an adversary or malware to invoke or modify internal
methods
— Bypass security controls
— Leak/Steal sensitive data

* Fairly unique situation that a developer cannot trust their own
runtime

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Runtime Tamper Protection Seting The Stanaere

* Attempts to determine whether functions have been hooked at
runtime

e Several tricks for iOS that can help identify runtime tampering,
but yet to see anything for Android DVM (this doesn’t mean it

doesn’t exist! ©)

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections

mMDSec

Setting The Standard.

Runtime Tamper Protection

e Check #1 : Validating the source image location

 The locations for dylibs with the SDK methods is a finite set of
directories:
— /Jusr/lib
— /System/Library/Frameworks
— /System/Library/PrivateFrameworks
— /System/Library/Accessibility
— /System/Library/TextInput

e Dladdr takes a function pointer and returns details on the
source image

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections

Runtime Tamper Protection

c‘MDSec

Setting The Standard.

e Retrieve the image name and compare it to known values

int classIsHooked(char * class_name)

{

char imagepath[1024];

int n;

D1_info info;

id ¢ = objc_lookUpClass(class_name);

Method * m = class_copyMethodList(c, &n);

for (int i=0; i<n; i++)

{
char * methodname = sel_getName(method_getName(m[i]));
void * methodimp = (void =) method_getImplementation(m[i]);
int d = dladdr({const void*) methodimp, &info);
if (!d) return YES;
strcpy(imagepath, info.dli_fname);
imagepath[27] = ©;
if (strcmp(imagepath, "/System/Library/Frameworks/") == @) continue;
strcpy(imagepath, info.dli_fname);
if (strcmp(info.dli_fname, image_name) == @) continue;
return YES;

}

return NO;

}

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections &M
DSec

Runtime Tamper Protection

Setting The Standard.

e Check #2: Scan for malicious libraries

 Cydia Substrate and Cycript will inject a dylib in to the process
when it launches

* |t’s possible to iterate the list of loaded libraries and search for
common jailbreak associated libraries such as “Substrate” and
“cycript”

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections cMD
- Sec

Runtime Tamper Protection

Setting The Standard.

* Get a list of linked libraries and scan for jailbreak strings

void scanForInjection()

{
uint32_t count = _dyld_image_count();
char* evillibs[] =
{
"Substrate", "cycript"
b
for(uint32_t i = 0; i < count; i++)
{
const char *dyld = _dyld_get_image_name(i);
int slength = strlen(dyld);
int j;
for(j = slength - 1; j=>= @; —-j)
if(dyld[j] == '/') break;
char *name = strndup(dyld + ++j, slength - j);
for(int x=0; x < sizeof(evillLibs) / sizeof(charx); x++)
{
if(strstr(name, evillibs([x]) || strstr{dyld, evilLibs([x]))
take_evasive_action("Found injected library matching string: %s", evillLibs[x]);
}
free(name);
}
}

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections QMD
Sec

Runtime Tamper Protection Seting The Stanaere

e Check #3: Check for Cydia Substrate patches

 Examining the code (see SubstrateHookFunctionARM) we
can see what it does:

buffer[start+8)] = A$ldr rd rn_im(A%pc, ASpc, 4 - 8);

* Trampoline is inserted, jumps to an absolute address

u |d|" PC, [pC, _OX4] int checkForArmHooks(void * func)
{

unsigned int %= iaddress = (unsigned int *) func;
if (func) {

if (iaddress[@] == @xe51ff004) return 1;
}

return 9;

© 2014 MDSec Consulting Ltd. All rights reserved.

Binary Protections

e
Obfuscation MDSGC

Setting The Standard.

* Attempts to complicate reverse engineering by making it difficult
or complex to understand

* Obfuscation typically achieves this by doing some or all of the
following (and morel):
— Obscure names of classes, fields and methods
— Insert bogus code
— Modify the control flow
— Substitution of instructions

* Android comes with ProGuard for release builds, llvm-obfuscator
iS an opensource native code equivalent

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #5 QMDS
. eC

Setting The Standard.

App Protection Product

 Reviewed a binary protection solution for a vendor

* Unfortunately work performed under NDA ;(

* The solution worked by embedding similar protections to those
described, including runtime tampering, checksum protection etc
to LLVM IR

* The protections worked an onion and each one needed to be
pealed off one at a time, starting with the integrity checksumming

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #5

App Protection Product MDSec

Setting The Standard.

Patching the binary and triggering a crash lead us to find some
examples of the validation routine from the call stack

e Reversing some of these functions we found a common
denominator, they all called srand ()

* In theory, it should be possible to identify all of the
checksumming functions by cross references to srand ()

© 2014 MDSec Consulting Ltd. All rights reserved.

Case Study #5 MDS
eC

App Protection Product Sefing Tho St

* IDAPython to the rescue!

idautils
idc

ScreenEA()
funcea Functions(SegStart(ea), SegEnd(ea)):
name = GetFunctionName(funcea)

name ["_srand"]:

ourfunc funcea

"found at %X funcea

ref CodeRefsTo(ourfunc, 1):
GetFunctionName(ref).find('139060"') " H
" called from %s (@x%sx)" (GetFunctionName(ref), ref)
start = idaapi.get_func(ref).startEA +12
end = idaapi.get_func(ref).endEA — 12
end-start

i range(start, end, 4):
PatchByte(i, 0x00)
PatchByte(i+1l, 0x00)
PatchByte(i+2, 0xa0)
PatchByte(i+3, Oxel)

© 2014 MDSec Consulting Ltd. All rights reserved.

Conclu:.;ions QMDSQC

Setting The Standard.

Overview

e Secure doesn’t always mean secure

* Binary protections aren’t a silver bullet!

* Protections need to be layered

© 2014 MDSec Consulting Ltd. All rights reserved.

Q&A Q
That’s all folks! MDseC

Setting The Standard.

QUESTIONS?

* Online:

— http://www.mdsec.co.uk

— http://blog.mdsec.co.uk

— https://github.com/mdsecresearch
E-Mail:

— dominic [at] mdsec [dot] co [dot] uk

e Twitter:
@domchell
@MDSecLabs

© 2014 MDSec Consulting Ltd. All rights reserved.

